enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Affine plane - Wikipedia

    en.wikipedia.org/wiki/Affine_plane

    Typical examples of affine planes are Euclidean planes, which are affine planes over the reals equipped with a metric, the Euclidean distance.In other words, an affine plane over the reals is a Euclidean plane in which one has "forgotten" the metric (that is, one does not talk of lengths nor of angle measures).

  3. Affine plane (incidence geometry) - Wikipedia

    en.wikipedia.org/wiki/Affine_plane_(incidence...

    A projective plane with a translation line is called a translation plane and the affine plane obtained by removing the translation line is called an affine translation plane. While in general it is often easier to work with projective planes, in this context the affine planes are preferred and several authors simply use the term translation ...

  4. Affine geometry - Wikipedia

    en.wikipedia.org/wiki/Affine_geometry

    A plane is said to have the "minor affine Desargues property" when two triangles in parallel perspective, having two parallel sides, must also have the third sides parallel. If this property holds in the affine plane defined by a ternary ring, then there is an equivalence relation between "vectors" defined by pairs of points from the plane. [14]

  5. Affine space - Wikipedia

    en.wikipedia.org/wiki/Affine_space

    Origins from Alice's and Bob's perspectives. Vector computation from Alice's perspective is in red, whereas that from Bob's is in blue. The following characterization may be easier to understand than the usual formal definition: an affine space is what is left of a vector space after one has forgotten which point is the origin (or, in the words of the French mathematician Marcel Berger, "An ...

  6. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  7. Affine connection - Wikipedia

    en.wikipedia.org/wiki/Affine_connection

    The pair (P, η) defines the structure of an affine geometry on M, making it into an affine manifold. The affine Lie algebra aff(n) splits as a semidirect product of R n and gl(n) and so η may be written as a pair (θ, ω) where θ takes values in R n and ω takes values in gl(n).

  8. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  9. Affine group - Wikipedia

    en.wikipedia.org/wiki/Affine_group

    Given the affine group of an affine space A, the stabilizer of a point p is isomorphic to the general linear group of the same dimension (so the stabilizer of a point in Aff(2, R) is isomorphic to GL(2, R)); formally, it is the general linear group of the vector space (A, p): recall that if one fixes a point, an affine space becomes a vector space.