enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".

  3. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.

  4. Statistical model - Wikipedia

    en.wikipedia.org/wiki/Statistical_model

    In Bayesian statistics, the model is extended by adding a probability distribution over the parameter space . A statistical model can sometimes distinguish two sets of probability distributions. The first set Q = { F θ : θ ∈ Θ } {\displaystyle {\mathcal {Q}}=\{F_{\theta }:\theta \in \Theta \}} is the set of models considered for inference.

  5. File:Employee Attrition Prediction.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Employee_Attrition...

    English: We aim to predict whether an employee of a company will leave or not, using the k-Nearest Neighbors algorithm. We use evaluation of employee performance, average monthly hours at work and number of years spent in the company, among others, as our features.

  6. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/.../Best_linear_unbiased_prediction

    Best linear unbiased predictions" (BLUPs) of random effects are similar to best linear unbiased estimates (BLUEs) (see Gauss–Markov theorem) of fixed effects. The distinction arises because it is conventional to talk about estimating fixed effects but about predicting random effects, but the two terms are otherwise equivalent.

  7. Scoring rule - Wikipedia

    en.wikipedia.org/wiki/Scoring_rule

    That is, a prediction of 80% that correctly proved true would receive a score of ln(0.8) = −0.22. This same prediction also assigns 20% likelihood to the opposite case, and so if the prediction proves false, it would receive a score based on the 20%: ln(0.2) = −1.6. The goal of a forecaster is to maximize the score and for the score to be ...

  8. Coverage probability - Wikipedia

    en.wikipedia.org/wiki/Coverage_probability

    In statistical prediction, the coverage probability is the probability that a prediction interval will include an out-of-sample value of the random variable. The coverage probability can be defined as the proportion of instances where the interval surrounds an out-of-sample value as assessed by long-run frequency. [2]

  9. Foundations of statistics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_statistics

    Using Multivariate Statistics (3rd ed.). HarperCollins College Publishers. ISBN 978-0-673-99414-1. Principal components is an empirical approach while factor analysis and structural equation modeling tend to be theoretical approaches.(p 27) Yu, Yue (2009). "Bayesian vs. Frequentist" (PDF). – Lecture notes? University of Illinois at Chicago