enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Thus only 23 fraction bits of the significand appear in the memory format, but the total precision is 24 bits (equivalent to log 10 (2 24) ≈ 7.225 decimal digits) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value.

  3. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The significand [1] (also coefficient, [1] sometimes argument, [2] or more ambiguously mantissa, [3] fraction, [4] [5] [nb 1] or characteristic [6] [3]) is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its significant digits. For negative numbers, it does not include ...

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 223 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.

  5. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    For example, a significand of 8 000 000 is encoded as binary 0111 1010000100 1000000000, with the leading 4 bits encoding 7; the first significand which requires a 24th bit (and thus the second encoding form) is 2 23 = 8 388 608. In the above cases, the value represented is: (−1) sign × 10 exponent−101 × significand

  6. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    With the 52 bits of the fraction (F) significand appearing in the ... 2 ≙ 4037 0000 0000 0000 16 ≙ +2 4 × 1.0111 2 = 10111 2 = 23

  7. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    fraction = .01000… 2. IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's-complement integers. Using a biased exponent, the lesser of two positive floating-point numbers will come out "less than" the greater following the same ordering as for sign and ...

  8. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    This is described in a SIGGRAPH 2000 paper [6] (see section 4.3) and further documented in US patent 7518615. [7] It was popularized by its use in the open-source OpenEXR image format. Nvidia and Microsoft defined the half datatype in the Cg language, released in early 2002, and implemented it in silicon in the GeForce FX, released in late 2002 ...

  9. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating-point value has a significand with a leading digit of zero.