Search results
Results from the WOW.Com Content Network
Such a field is always generated near where the atmosphere is closest to the Sun, causing daily alterations that can deflect surface magnetic fields by as much as 1°. Typical daily variations of field strength are about 25 nT (one part in 2000), with variations over a few seconds of typically around 1 nT (one part in 50,000). [68]
Like the North Magnetic Pole, the North Geomagnetic Pole attracts the north pole of a bar magnet and so is in a physical sense actually a magnetic south pole. It is the center of the 'open' magnetic field lines which connect to the interplanetary magnetic field and provide a direct route for the solar wind to reach the ionosphere.
Earth's two main belts extend from an altitude of about 640 to 58,000 km (400 to 36,040 mi) [3] above the surface, in which region radiation levels vary. The belts are in the inner region of Earth's magnetic field. They trap energetic electrons and protons. Other nuclei, such as alpha particles, are less prevalent.
The poles of the dipole are located close to Earth's geographic poles. At the equator of the magnetic field, the magnetic-field strength at the surface is 3.05 × 10 −5 T, with a magnetic dipole moment of 7.79 × 10 22 Am 2 at epoch 2000, decreasing nearly 6% per century (although it still remains stronger than its long time average). [146]
The Earth's magnetic field lines are horizontal at the magnetic equator. Solar heating and tidal oscillations in the lower ionosphere move plasma up and across the magnetic field lines. This sets up a sheet of electric current in the E region which, with the horizontal magnetic field, forces ionization up into the F layer, concentrating at ± ...
Magnetic north versus ‘true north’ At the top of the world in the middle of the Arctic Ocean lies the geographic North Pole, the point where all the lines of longitude that curve around Earth ...
Earth's magnetic field is produced in the outer liquid part of its core due to a dynamo that produce electrical currents there. The ions and electrons of a plasma interacting with the Earth's magnetic field generally follow its magnetic field lines. These represent the force that a north magnetic pole would experience at any given point.
Earth’s outer core is made up of mostly molten iron, a liquid metal. Unpredictable changes in the way it flows cause the magnetic field around the Earth to shift, which then causes the magnetic ...