enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    In 1900 Max Planck, attempting to explain black-body radiation, suggested that although light was a wave, these waves could gain or lose energy only in finite amounts related to their frequency. Planck called these "lumps" of light energy "quanta" (from a Latin word for "how much").

  3. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]

  4. Magnitude (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(astronomy)

    An illustration of light sources from magnitude 1 to 3.5, in 0.5 increments. In astronomy, magnitude is a measure of the brightness of an object, usually in a defined passband. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus. Magnitude values do not have a unit.

  5. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    Visible light (and near-infrared light) is typically absorbed and emitted by electrons in molecules and atoms that move from one energy level to another. This action allows the chemical mechanisms that underlie human vision and plant photosynthesis. The light that excites the human visual system is a very small portion of the electromagnetic ...

  6. Angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_of_light

    Light, or more generally an electromagnetic wave, carries not only energy but also momentum, which is a characteristic property of all objects in translational motion. The existence of this momentum becomes apparent in the "radiation pressure " phenomenon, in which a light beam transfers its momentum to an absorbing or scattering object, generating a mechanical pressure on it in the process.

  7. Luminance - Wikipedia

    en.wikipedia.org/wiki/Luminance

    As an example, if one uses a lens to form an image that is smaller than the source object, the luminous power is concentrated into a smaller area, meaning that the illuminance is higher at the image. The light at the image plane, however, fills a larger solid angle so the luminance comes out to be the same assuming there is no loss at the lens.

  8. Intensity (physics) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(physics)

    Intensity is used most frequently with waves such as acoustic waves , matter waves such as electrons in electron microscopes, and electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred.

  9. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    In a medium, light usually does not propagate at a speed equal to c; further, different types of light wave will travel at different speeds. The speed at which the individual crests and troughs of a plane wave (a wave filling the whole space, with only one frequency) propagate is called the phase velocity v p. A physical signal with a finite ...