Search results
Results from the WOW.Com Content Network
Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences. [1] Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA).
Regulation of ribosome synthesis hinges on the regulation of the rRNA itself. First, a reduction in aminoacyl-tRNA will cause the prokaryotic cell to respond by lowering transcription and translation. This occurs through a series of steps, beginning with stringent factors binding to ribosomes and catalyzing the reaction: GTP + ATP --> pppGpp + AMP
In prokaryotes each ribosome is composed of small (30S) ... other steps in protein synthesis (such as translocation) are caused by changes in protein conformations.
Prokaryotic ribosomes begin translation of the mRNA transcript while DNA is still being transcribed. Thus translation and transcription are parallel processes. Bacterial mRNA are usually polycistronic and contain multiple ribosome binding sites. Translation initiation is the most highly regulated step of protein synthesis in prokaryotes. [5]
Central dogma depicting transcription from DNA code to RNA code to the proteins in the second step covering the production of protein. Protein production is the biotechnological process of generating a specific protein. It is typically achieved by the manipulation of gene expression in an organism such that it expresses large amounts of a ...
Protein anabolism is the process by which proteins are formed from amino acids. It relies on five processes: amino acid synthesis, transcription, translation, post translational modifications, and protein folding. Proteins are made from amino acids. In humans, some amino acids can be synthesized using already existing intermediates. These amino ...
Similar to eukaryotes, the production of rRNA is the rate-limiting step in the prokaryotic synthesis of a ribosome. In E. coli, it has been found that rRNA is transcribed from the two promoters P1 and P2 found within seven different rrn operons.
For a protein containing n amino acids, the number of high-energy phosphate bonds required to translate it is 4n-1. [9] The rate of translation varies; it is significantly higher in prokaryotic cells (up to 17–21 amino acid residues per second) than in eukaryotic cells (up to 6–9 amino acid residues per second). [10]