enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    1.6 Limit comparison test. 1.7 Cauchy condensation test. 1.8 Abel's test. 1.9 Absolute convergence test. 1.10 Alternating series test. ... Examples. Consider the series

  4. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.

  5. Comparison test - Wikipedia

    en.wikipedia.org/wiki/Comparison_test

    Comparison test can mean: Limit comparison test, a method of testing for the convergence of an infinite series. Direct comparison test, ...

  6. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  7. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    The root test states that: if C < 1 then the series converges absolutely, if C > 1 then the series diverges, if C = 1 and the limit approaches strictly from above then the series diverges, otherwise the test is inconclusive (the series may diverge, converge absolutely or converge conditionally).

  8. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  9. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.