Search results
Results from the WOW.Com Content Network
In addition to Cori Cycle, the lactate shuttle hypothesis proposes complementary functions of lactate in multiple tissues. Contrary to the long-held belief that lactate is formed as a result of oxygen-limited metabolism, substantial evidence exists that suggests lactate is formed under both aerobic and anaerobic conditions, as a result of substrate supply and equilibrium dynamics.
Lactate can be thought of essentially as payment for "oxygen debt", defined by Hill and Lupton as the "total amount of oxygen used, after cessation of exercise in recovery there from". [ 5 ] Clinical significance
Erythrocyte lactate transporter defect (formerly, myopathy due to lactate transport defect) is an autosomal dominant disease on the SLC16A1/MCT gene on chromosome 1p.13.2. It causes exercise-induced muscle cramping, stiffness, and fatigue ( exercise intolerance ); symptoms may also be induced by heat.
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.
Lactic acidosis refers to the process leading to the production of lactate by anaerobic metabolism. It increases hydrogen ion concentration tending to the state of acidemia or low pH. The result can be detected with high levels of lactate and low levels of bicarbonate. This is usually considered the result of illness but also results from ...
Reaction catalyzed by lactate dehydrogenase. Lactate dehydrogenase catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of NADH and NAD +.It converts pyruvate, the final product of glycolysis, to lactate when oxygen is absent or in short supply, and it performs the reverse reaction during the Cori cycle in the liver.
Anaerobic glycolysis is the transformation of glucose to lactate when limited amounts of oxygen (O 2) are available. [1] This occurs in health as in exercising and in disease as in sepsis and hemorrhagic shock. [1] providing energy for a period ranging from 10 seconds to 2 minutes.
The lactate is then taken and converted by the liver, forming the material for liver glycogen. The majority of the body's liver glycogen is produced indirectly, rather than directly from glucose in the blood. Under normal physiological conditions, glucose is a poor precursor compound and use by the liver is limited. [2] [4]