Search results
Results from the WOW.Com Content Network
[12] [13] Only positive integers were considered, making the term synonymous with the natural numbers. The definition of integer expanded over time to include negative numbers as their usefulness was recognized. [14] For example Leonhard Euler in his 1765 Elements of Algebra defined integers to include both positive and negative numbers. [15]
In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers.
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 3 3 × 5 2 × 7 2 × 11 × 13 × 17 × 19 × 23 × 29. [ 8 ] If p = ( p 1 , ..., p n ) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant.
It has been suggested instead that the table was a source of numerical examples for school problems. [6] [note 3] While evidence of Babylonian number theory is only survived by the Plimpton 322 tablet, some authors assert that Babylonian algebra was exceptionally well developed and included the foundations of modern elementary algebra. [7]
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.
A positive integer that can be written as the sum of two or more consecutive positive integers. A138591: ErdÅ‘s–Nicolas numbers: 24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328, ... A number n such that there exists another number m and , =. A194472: Solution to Stepping Stone Puzzle
The sequence of primes, along with 1, is a complete sequence; any positive integer can be written as a sum of primes (and 1) using each at most once. The only harmonic number that is an integer is the number 1.