Search results
Results from the WOW.Com Content Network
Figure 5: An example of non-canonical base pairing. Shown is a Hoogsteen AU base pair. Hoogsteen base pairs occur between adenine (A) and thymine (T); and guanine (G) and cytosine(C); similarly to Watson-Crick base pairs. However, the purine (A and G) takes on an alternative conformation with respect to the pyrimidine.
Deoxyribonucleic acid (DNA) is a nucleic acid containing the genetic instructions used in the development and functioning of all known living organisms. The chemical DNA was discovered in 1869, but its role in genetic inheritance was not demonstrated until 1943. The DNA segments that carry this genetic information are called genes.
DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m 5 C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine ...
The second table, appropriately called the inverse, does the opposite: it can be used to deduce a possible triplet code if the amino acid is known. As multiple codons can code for the same amino acid, the International Union of Pure and Applied Chemistry's (IUPAC) nucleic acid notation is given in some instances.
[10] UNCG. In the UNCG is favorable thermodynamically and structurally due to hydrogen bonding, van der Waals interactions, coulombic interactions and the interactions between the RNA and the solvent. The UNCG tetraloops are more stable than DNA loops with the same sequence. The UUCG tetraloop is the most stable tetraloop. [11]
A nucleic acid sequence is a succession of bases within the nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. This succession is denoted by a series of a set of five different letters that indicate the order of the nucleotides. By convention, sequences are usually presented from the 5' end to the 3' end.
Nucleic acid tertiary structure is the three-dimensional shape of a ... The double helix makes one complete turn about its axis every 10.4–10.5 base pairs in ...
Nucleic acid design can be used to create nucleic acid complexes with complicated secondary structures such as this four-arm junction. These four strands associate into this structure because it maximizes the number of correct base pairs, with As matched to Ts and Cs matched to Gs. Image from Mao, 2004. [5]