Search results
Results from the WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ( y , x ) {\textstyle \arctan(y,x)} .
A proof of Liouville's theorem can be found in section 12.4 of Geddes, et al. [4] See Lützen's scientific bibliography for a sketch of Liouville's original proof [5] (Chapter IX. Integration in Finite Terms), its modern exposition and algebraic treatment (ibid. §61).
One way of improving the approximation is to take a quadratic approximation. That is to say, the linearization of a real-valued function f(x) at the point x 0 is a linear polynomial a + b(x − x 0), and it may be possible to get a better approximation by considering a quadratic polynomial a + b(x − x 0) + c(x − x 0) 2.
h := sqrt(eps) * x; xph := x + h; dx := xph - x; slope := (F(xph) - F(x)) / dx; However, with computers, compiler optimization facilities may fail to attend to the details of actual computer arithmetic and instead apply the axioms of mathematics to deduce that dx and h are the same.
Given a simply connected and open subset D of and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form (,) + (,) =,is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, [1] [2] so that
This can be seen in the following tables, the left of which shows Newton's method applied to the above f(x) = x + x 4/3 and the right of which shows Newton's method applied to f(x) = x + x 2. The quadratic convergence in iteration shown on the right is illustrated by the orders of magnitude in the distance from the iterate to the true root (0,1 ...
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f.The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.