Search results
Results from the WOW.Com Content Network
The Modified Mercalli intensity scale (MM, MMI, or MCS) measures the effects of an earthquake at a given location. This is in contrast with the seismic magnitude usually reported for an earthquake. Magnitude scales measure the inherent force or strength of an earthquake – an event occurring at greater or lesser depth. (The "M w" scale is ...
Originally intended for estimating the magnitude of historic earthquakes where seismic data is lacking but tidal data exist, the correlation can be reversed to predict tidal height from earthquake magnitude. [63] (Not to be confused with the height of a tidal wave, or run-up, which is an intensity effect controlled by local topography.) Under ...
The Richter scale [1] (/ ˈ r ɪ k t ər /), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, [2] is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". [3]
Seismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake. They are distinguished from seismic magnitude scales , which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking.
This means that for a given frequency of magnitude 4.0 or larger events there will be 10 times as many magnitude 3.0 or larger quakes and 100 times as many magnitude 2.0 or larger quakes. There is some variation of b-values in the approximate range of 0.5 to 2 depending on the source environment of the region. [ 5 ]
Thus, a magnitude zero microearthquake has a seismic moment of approximately 1.1 × 10 9 N⋅m, while the Great Chilean earthquake of 1960, with an estimated moment magnitude of 9.4–9.6, had a seismic moment between 1.4 × 10 23 N⋅m and 2.8 × 10 23 N⋅m. Seismic moment magnitude (M wg or Das Magnitude Scale ) and moment magnitude (M w) scales
Since the properties of the seismic response depend on the intensity, or severity, of the seismic shaking, a comprehensive assessment calls for numerous nonlinear dynamic analyses at various levels of intensity to represent different possible earthquake scenarios. This has led to the emergence of methods like the incremental dynamic analysis. [4]
The formula to calculate surface wave magnitude is: [3] = + (), where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s (usually 20 ± 2 seconds), Δ is the epicentral distance in °, and