enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Seismic magnitude scales - Wikipedia

    en.wikipedia.org/wiki/Seismic_magnitude_scales

    Originally intended for estimating the magnitude of historic earthquakes where seismic data is lacking but tidal data exist, the correlation can be reversed to predict tidal height from earthquake magnitude. [63] (Not to be confused with the height of a tidal wave, or run-up, which is an intensity effect controlled by local topography.) Under ...

  3. Seismic intensity scales - Wikipedia

    en.wikipedia.org/wiki/Seismic_intensity_scales

    Seismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake. They are distinguished from seismic magnitude scales , which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking.

  4. Richter scale - Wikipedia

    en.wikipedia.org/wiki/Richter_scale

    The Richter scale [1] (/ ˈ r ɪ k t ər /), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, [2] is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". [3]

  5. Modified Mercalli intensity scale - Wikipedia

    en.wikipedia.org/wiki/Modified_Mercalli...

    The Modified Mercalli intensity scale (MM, MMI, or MCS) measures the effects of an earthquake at a given location. This is in contrast with the seismic magnitude usually reported for an earthquake. Magnitude scales measure the inherent force or strength of an earthquake – an event occurring at greater or lesser depth. (The "M w" scale is ...

  6. Gutenberg–Richter law - Wikipedia

    en.wikipedia.org/wiki/Gutenberg–Richter_law

    This means that for a given frequency of magnitude 4.0 or larger events there will be 10 times as many magnitude 3.0 or larger quakes and 100 times as many magnitude 2.0 or larger quakes. There is some variation of b-values in the approximate range of 0.5 to 2 depending on the source environment of the region. [ 5 ]

  7. Surface-wave magnitude - Wikipedia

    en.wikipedia.org/wiki/Surface-wave_magnitude

    The formula to calculate surface wave magnitude is: [3] = ⁡ + (), where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s (usually 20 ± 2 seconds), Δ is the epicentral distance in °, and

  8. Japan Meteorological Agency seismic intensity scale

    en.wikipedia.org/wiki/Japan_Meteorological...

    Before 1995, an earthquake with a maximum seismic intensity of 6 was certainly a "major earthquake" in terms of magnitude. However, since 1996, even very shallow minor earthquakes are more likely to report seismic intensities of 5 or 6, so it is not appropriate to treat "earthquakes with a maximum seismic intensity of 6" on par with those ...

  9. Seismic analysis - Wikipedia

    en.wikipedia.org/wiki/Seismic_analysis

    Since the properties of the seismic response depend on the intensity, or severity, of the seismic shaking, a comprehensive assessment calls for numerous nonlinear dynamic analyses at various levels of intensity to represent different possible earthquake scenarios. This has led to the emergence of methods like the incremental dynamic analysis. [4]