Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
A simulation of a charged particle being deflected from the Earth by the magnetosphere. Thus in the "closed" model of the magnetosphere, the magnetopause boundary between the magnetosphere and the solar wind is outlined by field lines. Not much plasma can cross such a stiff boundary. [1]
The magnetosphere is defined by the extent of Earth's magnetic field in space or geospace. It extends above the ionosphere , several tens of thousands of kilometres into space , protecting Earth from the charged particles of the solar wind and cosmic rays that would otherwise strip away the upper atmosphere, including the ozone layer that ...
The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere . The outer boundary of the plasmasphere is known as the plasmapause , which is defined by an order of magnitude drop in plasma density.
A magnetized planet creates a cavity in the solar wind around itself called the magnetosphere, which the wind cannot penetrate. The magnetosphere can be much larger than the planet itself. In contrast, non-magnetized planets have only small magnetospheres induced by interaction of the ionosphere with the solar wind, which cannot effectively ...
Schematic view of the different current systems which shape the Earth's magnetosphere. Earth's ring current is responsible for shielding the lower latitudes of the Earth from magnetospheric electric fields. It therefore has a large effect on the electrodynamics of geomagnetic storms.
The interaction between solar wind and geomagnetic field eventually combine to result in the formation of an electrical current layer, which is called the magnetopause. This electric current layer confines the Earth's magnetic field. The region in which the magnetopause is enclosed in is known as the magnetosphere. [7]
Whenever charged particles from the sun hit Earth's magnetosphere, it is observed that the magnetic field of Earth reverses direction. Since the forces that generate our magnetic field are constantly changing, the field itself is also in continual flux, its strength waxing and waning over time.