enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planetary hours - Wikipedia

    en.wikipedia.org/wiki/Planetary_hours

    As each day is divided into 24 hours, the first hour of a day is ruled by the planet three places down in the Chaldean order from the planet ruling the first hour of the preceding day; [2] i.e. a day with its first hour ruled by the Sun ("Sunday") is followed by a day with its first hour ruled by the Moon ("Monday"), followed by Mars ("Tuesday ...

  3. Solar time - Wikipedia

    en.wikipedia.org/wiki/Solar_time

    On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...

  4. Mars sol - Wikipedia

    en.wikipedia.org/wiki/Mars_sol

    It is approximately 24 hours, 39 minutes, 35 seconds long. A Martian year is approximately 668.6 sols, equivalent to approximately 687 Earth days [ 1 ] or 1.88 Earth years. The sol was adopted in 1976 during the Viking Lander missions and is a measure of time mainly used by NASA when, for example, scheduling the use of a Mars rover .

  5. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).

  6. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    A year has about 365.24 solar days but 366.24 sidereal days. Therefore, there is one fewer solar day per year than there are sidereal days, similar to an observation of the coin rotation paradox. [5] This makes a sidereal day approximately ⁠ 365.24 / 366.24 ⁠ times the length of the 24-hour solar day.

  7. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    A convention used by spacecraft lander projects to date has been to enumerate local solar time using a 24-hour "Mars clock" on which the hours, minutes and seconds are 2.75% longer than their standard (Earth) durations. This has the advantage that no handling of times greater than 23:59 is needed, so standard tools can be used.

  8. Tidal locking - Wikipedia

    en.wikipedia.org/wiki/Tidal_locking

    Current estimations are that this (together with the tidal influence of the Sun) has helped lengthen the Earth day from about 6 hours to the current 24 hours (over about 4.5 billion years). Currently, atomic clocks show that Earth's day lengthens, on average, by about 2.3 milliseconds per century. [ 9 ]

  9. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    This is longer than the sidereal period of its orbit around Earth, which is 27.3 mean solar days, owing to the motion of Earth around the Sun. The draconitic period (also draconic period or nodal period ), is the time that elapses between two passages of the object through its ascending node , the point of its orbit where it crosses the ...