enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    In the liver, muscles, and the kidney, this process occurs to provide glucose when necessary. [12] A single glucose molecule is cleaved from a branch of glycogen, and is transformed into glucose-1-phosphate during this process. [1] This molecule can then be converted to glucose-6-phosphate, an intermediate in the glycolysis pathway. [1]

  3. Microbial metabolism - Wikipedia

    en.wikipedia.org/wiki/Microbial_metabolism

    Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.

  4. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Glucose reacts with oxygen in the following reaction, C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O. Carbon dioxide and water are waste products, and the overall reaction is exothermic. The reaction of glucose with oxygen releasing energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms.

  5. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.

  6. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.

  7. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  8. PEP group translocation - Wikipedia

    en.wikipedia.org/wiki/PEP_group_translocation

    The phosphoryl group on PEP is eventually transferred to the imported sugar via several proteins. The phosphoryl group is transferred to the Enzyme E I (EI), Histidine Protein (HPr, Heat-stable Protein) and Enzyme E II (EII) to a conserved histidine residue, whereas in the Enzyme E II B (EIIB) the phosphoryl group is usually transferred to a cysteine residue and rarely to a histidine.

  9. Polysaccharide - Wikipedia

    en.wikipedia.org/wiki/Polysaccharide

    Some bacteria and protists can metabolize these carbohydrate types. Ruminants and termites, for example, use microorganisms to process cellulose. [7] Even though these complex polysaccharides are not very digestible, they provide important dietary elements for humans. Called dietary fiber, these carbohydrates