Search results
Results from the WOW.Com Content Network
The 22-kHz vocalizations of adults and the 40-kHz vocalizations of pups are emitted in response to aversive situations or noxious stimuli. [8] For example, isolation, aggression between males, appearance of predators , surprising noises and inescapable foot shocks would elicit these vocalizations. [ 8 ]
Ultrasound is sound with frequencies greater than 20 kilohertz. [1] This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.
Ultrasonic hearing is a recognised auditory effect which allows humans to perceive sounds of a much higher frequency than would ordinarily be audible using the inner ear, usually by stimulation of the base of the cochlea through bone conduction. Normal human hearing is recognised as having an upper bound of 15–28 kHz, [1] depending on the person.
Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.
This method of medical ultrasound therapy can be used for various types of pain relief and physical therapy. In physics, the term "ultrasound" [1] applies to all acoustic energy with a frequency above the audible range of human hearing. The audible range of sound is 20 hertz – 20 kilohertz. Ultrasound frequency is greater than 20 kilohertz.
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
Ultrasound can ablate tumors or other tissue non-invasively. [4] This is accomplished using a technique known as high intensity focused ultrasound (HIFU), also called focused ultrasound surgery. This procedure uses generally lower frequencies than medical diagnostic ultrasound (250–2000 kHz), but significantly higher time-averaged intensities.
The ultrasound probe emits a high-frequency sound wave (usually a multiple of 2 MHz) that bounces off various substances in the body. These echoes are detected by a sensor in the probe. In the case of blood in an artery, the echoes have different frequencies depending on the direction and speed of the blood because of the Doppler effect. [2]