enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Synodic day - Wikipedia

    en.wikipedia.org/wiki/Synodic_day

    A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day, which is one complete rotation in relation to distant stars [1] and is the basis of sidereal time.

  3. Sidereal year - Wikipedia

    en.wikipedia.org/wiki/Sidereal_year

    The sidereal year is 20 min 24.5 s longer than the mean tropical year at J2000.0 (365.242 190 402 ephemeris days). [1] At present, the rate of axial precession corresponds to a period of 25,772 years, [3] so sidereal year is longer than tropical year by 1,224.5 seconds (20 min 24.5 s, ~365.24219*86400/25772).

  4. Lunar month - Wikipedia

    en.wikipedia.org/wiki/Lunar_month

    The synodic month (Greek: συνοδικός, romanized: synodikós, meaning "pertaining to a synod, i.e., a meeting"; in this case, of the Sun and the Moon), also lunation, is the average period of the Moon's orbit with respect to the line joining the Sun and Earth: 29 (Earth) days, 12 hours, 44 minutes and 2.9 seconds. [5]

  5. Lunar day - Wikipedia

    en.wikipedia.org/wiki/Lunar_day

    Due to tidal locking, this equals the time that the Moon takes to complete one synodic orbit around Earth, a synodic lunar month, returning to the same lunar phase. The synodic period is about 29 + 1 ⁄ 2 Earth days, which is about 2.2 days longer than its sidereal period.

  6. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).

  7. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    [1] Viewed from the same location, a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal rotation period).

  8. Moon - Wikipedia

    en.wikipedia.org/wiki/Moon

    This synodic period or synodic month is commonly known as the lunar month and is equal to the length of the solar day on the Moon. [179] Due to tidal locking, the Moon has a 1:1 spin–orbit resonance. This rotation–orbit ratio makes the Moon's orbital periods around Earth equal to its corresponding rotation periods.

  9. Solar calendar - Wikipedia

    en.wikipedia.org/wiki/Solar_calendar

    The mean calendar year of such a calendar approximates the sidereal year. Leaping from one lunation to another, but one Sidereal year is the period between two occurrences of the sun, as measured by the stars' solar calendar, which is derived from the Earth's orbit around the sun every 28 years. [3]