Search results
Results from the WOW.Com Content Network
Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. [1] It is also known as Lorentz contraction or Lorentz–FitzGerald contraction (after Hendrik Lorentz and George Francis FitzGerald ) and is usually only noticeable ...
The proper length of an object is the length of the object in the frame in which the object is at rest. Also, this contraction only affects the dimensions of the object which are parallel to the relative velocity between the object and observer. Thus, lengths perpendicular to the direction of motion are unaffected by length contraction.
So, calculations made in both frames show that the thread will break; in S′ due to the non-simultaneous acceleration and the increasing distance between the spaceships, and in S due to length contraction of the thread. In the following, the rest length [3] or proper length [4] of an object
In the k-calculus methodology, distances are measured using radar.An observer sends a radar pulse towards a target and receives an echo from it. The radar pulse (which travels at , the speed of light) travels a total distance, there and back, that is twice the distance to the target, and takes time , where and are times recorded by the observer's clock at transmission and reception of the ...
Length contraction Suppose there is a rod at rest in F aligned along the x axis, with length Δx. In F′, the rod moves with velocity -v, so its length must be measured by taking two simultaneous (Δt′ = 0) measurements at opposite ends. Under these conditions, the inverse Lorentz transform shows that Δx = γΔx′
There is Robertson's test theory (1949) which predicts different experimental results from Einstein's special relativity, and there is the Mansouri–Sexl theory (1977) which is equivalent to Robertson's theory. There is also Edward's theory (1963) which cannot be called a test theory because it is physically equivalent to special relativity. [16]
In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl 1,3 (R), or equivalently the geometric algebra G(M 4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and ...
The equation is often written this way because the difference is the relativistic length of the energy momentum four-vector, a length which is associated with rest mass or invariant mass in systems. Where m > 0 and p = 0 , this equation again expresses the mass–energy equivalence E = m .