Search results
Results from the WOW.Com Content Network
in secondary xylem, laid down by a meristem called the vascular cambium in woody plants; as part of a stelar arrangement not divided into bundles, as in many ferns. In transitional stages of plants with secondary growth, the first two categories are not mutually exclusive, although usually a vascular bundle will contain primary xylem only.
In vascular cambium, the primary phloem and xylem are produced by the apical meristem. After this initial development, secondary phloem and xylem are produced by the lateral meristem. The two are connected through a thin layer of parenchymal cells which are differentiated into the fascicular cambium.
Secondary growth thickens the stem and roots, typically making them woody.Obstructions such as this metal post and stubs of limbs can be engulfed. In botany, secondary growth is the growth that results from cell division in the cambia or lateral meristems and that causes the stems and roots to thicken, while primary growth is growth that occurs as a result of cell division at the tips of stems ...
The cambium present between primary xylem and primary phloem is called the intrafascicular cambium (within vascular bundles). During secondary growth, cells of medullary rays, in a line (as seen in section; in three dimensions, it is a sheet) between neighbouring vascular bundles, become meristematic and form new interfascicular cambium ...
Cross section of celery stalk, showing vascular bundles, which include both phloem and xylem Detail of the vasculature of a bramble leaf Translocation in vascular plants. Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem ...
It is distinguished from secondary growth that leads to widening. Plant growth takes place in well defined plant locations. Specifically, the cell division and differentiation needed for growth occurs in specialized structures called meristems. [1] [2] These consist of undifferentiated cells (meristematic cells) capable of cell division. Cells ...
The vascular cambium forms between the xylem and phloem in the vascular bundles and connects to form a continuous cylinder. The vascular cambium cells divide to produce secondary xylem to the inside and secondary phloem to the outside. As the stem increases in diameter due to production of secondary xylem and secondary phloem, the cortex and ...
Both of these cell types have thick, lignified secondary cell walls and are dead at maturity. Although several mechanisms have been proposed to explain how sap moves through the xylem, the cohesion-tension mechanism [1] has the most support. Although cohesion-tension has received criticism due to the apparent existence of large negative ...