enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);

  4. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    In orbital mechanics, the equations of motion of planets are formulated as point masses located at the centers of mass (see Barycenter (astronomy) for details). The center of mass frame is an inertial frame in which the center of mass of a system is at rest with respect to the origin of the coordinate system.

  5. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In the Einstein field equations, it quantifies the relation between the geometry of spacetime and the energy–momentum tensor (also referred to as the stress–energy tensor). The measured value of the constant is known with some certainty to four significant digits. In SI units, its value is approximately 6.6743 × 10 −11 m 3 kg −1 s −2 ...

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Gauss's law for gravity - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_gravity

    In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux (surface integral) of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's ...

  8. Gravitational binding energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_binding_energy

    For a spherical body of uniform density, the gravitational binding energy U is given in Newtonian gravity by the formula [2] [3] = where G is the gravitational constant, M is the mass of the sphere, and R is its radius.

  9. Gravitational potential - Wikipedia

    en.wikipedia.org/wiki/Gravitational_potential

    The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.