Search results
Results from the WOW.Com Content Network
In the rare case that these other methods all fail, Fibonacci suggests a "greedy" algorithm for computing Egyptian fractions, in which one repeatedly chooses the unit fraction with the smallest denominator that is no larger than the remaining fraction to be expanded: that is, in more modern notation, we replace a fraction x / y by the ...
This method chooses one unit fraction at a time, at each step choosing the largest possible unit fraction that would not cause the expanded sum to exceed the target number. After each step, the numerator of the fraction that still remains to be expanded decreases, so the total number of steps can never exceed the starting numerator, [ 1 ] but ...
The simplest fraction 3 / y with a three-term expansion is 3 / 7 . A fraction 4 / y requires four terms in its greedy expansion if and only if y ≡ 1 or 17 (mod 24), for then the numerator −y mod x of the remaining fraction is 3 and the denominator is 1 (mod 6). The simplest fraction 4 / y with a four-term ...
An item whose delay is times the length of a message must occupy a fraction of at least / of the time slots on the channel it is assigned to, so a solution to the scheduling problem can only come from a solution to the unit fraction bin packing problem with the channels as bins and the fractions / as item sizes.
A simple fraction (also known as a common fraction or vulgar fraction) [n 1] is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5 .
For example, the numerators of fractions with common denominators can simply be added, such that + = and that <, since each fraction has the common denominator 12. Without computing a common denominator, it is not obvious as to what 5 12 + 11 18 {\displaystyle {\frac {5}{12}}+{\frac {11}{18}}} equals, or whether 5 12 {\displaystyle {\frac {5 ...
This is a linear Diophantine equation, related to Bézout's identity. + = + The smallest nontrivial solution in positive integers is 12 3 + 1 3 = 9 3 + 10 3 = 1729.It was famously given as an evident property of 1729, a taxicab number (also named Hardy–Ramanujan number) by Ramanujan to Hardy while meeting in 1917. [1]
Continued fractions are, in some ways, more "mathematically natural" representations of a real number than other representations such as decimal representations, and they have several desirable properties: The continued fraction representation for a real number is finite if and only if it is a rational number.