Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Moody's team used the available data (including that of Nikuradse) to show that fluid flow in rough pipes could be described by four dimensionless quantities: Reynolds number, pressure loss coefficient, diameter ratio of the pipe and the relative roughness of the pipe.
Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables.This technique can simplify and parameterize problems where measured units are involved.
The dimensionless quantities often represent the degree of deviation from an ideal shape, such as a circle, sphere or equilateral polyhedron. [1] Shape factors are often normalized, that is, the value ranges from zero to one. A shape factor equal to one usually represents an ideal case or maximum symmetry, such as a circle, sphere, square or cube.
Download as PDF; Printable version; In other projects ... Dimensionless quantities (2 C, 9 P) R. Ratios (11 C, 58 P) T. Dimensionless numbers of thermodynamics (21 P ...
This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in (certain areas of) the considered flow.