enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x .

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail for noncommuting x and y. Some alternative definitions lead to the same function. For instance, e x can be defined as (+).

  4. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity is a special case of Euler's formula, which states that for any real number x, = ⁡ + ⁡ where the inputs of the trigonometric functions sine and cosine are given in radians. In particular, when x = π, = ⁡ + ⁡. Since

  5. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Definition (3) presents a problem because there are non-equivalent paths along which one could integrate; but the equation of (3) should hold for any such path modulo . As for definition (5), the additive property together with the complex derivative f ′ ( 0 ) = 1 {\displaystyle f'(0)=1} are sufficient to guarantee f ( x ) = e x ...

  6. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  7. Gelfond's constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond's_constant

    In mathematics, the exponential of pi e π, [1] also called Gelfond's constant, [2] is the real number e raised to the power π. Its decimal expansion is given by: e π = 23.140 692 632 779 269 005 72... (sequence A039661 in the OEIS) Like both e and π, this constant is both irrational and transcendental.

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye X Y −1. The next key result is this one:

  9. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .