Search results
Results from the WOW.Com Content Network
The parabola opens upward. It is shown elsewhere in this article that the equation of the parabola is 4fy = x 2, where f is the focal length. At the positive x end of the chord, x = c / 2 and y = d. Since this point is on the parabola, these coordinates must satisfy the equation above.
Quadratic function. In mathematics, a quadratic function of a single variable is a function of the form [1] where is its variable, and , , and are coefficients. The expression , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.
In polar coordinates, the equations are simpler when the circle of inversion is the unit circle. The inverse of the point (r, θ) with respect to the unit circle is (R, Θ) where. {\displaystyle R= {\frac {1} {r}},\qquad \Theta =\theta .} So the inverse of the curve f(r, θ) = 0 is determined by f( 1 R, Θ) = 0 and the inverse of the ...
Paraboloid. In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid by a plane parallel to the axis of symmetry is a parabola.
Quadratic equation. In mathematics, a quadratic equation (from Latin quadratus ' square ') is an equation that can be rearranged in standard form as [1] where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in - dimensional Euclidean space. [1]
The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.