enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continued fraction (non-simple) - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction_(non...

    Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years. [9]

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 8 −5 ⁠.

  4. Ratio - Wikipedia

    en.wikipedia.org/wiki/Ratio

    If the ratio consists of only two values, it can be represented as a fraction, in particular as a decimal fraction. For example, older televisions have a 4:3 aspect ratio, which means that the width is 4/3 of the height (this can also be expressed as 1.33:1 or just 1.33 rounded to two decimal places). More recent widescreen TVs have a 16:9 ...

  5. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, a rational number is a number that can be expressed as the quotient or fraction ⁠ ⁠ of two integers, a numerator p and a non-zero denominator q. [1] For example, ⁠ ⁠ is a rational number, as is every integer (for example, ). The set of all rational numbers, also referred to as " the rationals ", [2] the field of ...

  6. Fractional part - Wikipedia

    en.wikipedia.org/wiki/Fractional_part

    The fractional part or decimal part[1] of a non‐negative real number is the excess beyond that number's integer part. The latter is defined as the largest integer not greater than x, called floor of x or . Then, the fractional part can be formulated as a difference: The fractional part of logarithms, [2] specifically, is also known as the ...

  7. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = ⁠ 1585 / 1000 ⁠); it may also be written as a ratio of the form ⁠ k / 2 n ·5 m ⁠ (e.g. 1.585 = ⁠ 317 / 2 3 ·5 2 ⁠).

  8. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Every decimal representation of a rational number can be converted to a fraction by converting it into a sum of the integer, non-repeating, and repeating parts and then converting that sum to a single fraction with a common denominator. For example, to convert. 8.123 {\textstyle \pm 8.123 {\overline {4567}}} to a fraction one notes the lemma:

  9. Decimal separator - Wikipedia

    en.wikipedia.org/wiki/Decimal_separator

    In the Middle Ages, before printing, a bar ( ¯ ) over the units digit was used to separate the integral part of a number from its fractional part, as in 9 9 95 (meaning 99.95 in decimal point format). A similar notation remains in common use as an underbar to superscript digits, especially for monetary values without a decimal separator, as in ...