Search results
Results from the WOW.Com Content Network
17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...
Calculate the remainders left by each product on dividing by 7. Add these remainders. The remainder of the sum when divided by 7 is the remainder of the given number when divided by 7. For example: The number 194,536 leaves a remainder of 6 on dividing by 7. The number 510,517,813 leaves a remainder of 1 on dividing by 7.
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...
However, this number of times or the number contained (divisor) need not be integers. The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
A division algorithm is an algorithm which, given two integers N and D (respectively the numerator and the denominator), computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow ...
In each step k of the Euclidean algorithm, the quotient q k and remainder r k are computed for a given pair of integers r k−2 and r k−1. r k−2 = q k r k−1 + r k. The computational expense per step is associated chiefly with finding q k, since the remainder r k can be calculated quickly from r k−2, r k−1, and q k. r k = r k−2 − q ...
In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is 4, that is, gcd (8, 12 ...