enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. VSOP model - Wikipedia

    en.wikipedia.org/wiki/VSOP_model

    The factor a in the preceding formula is the main amplitude, the factor q the main angular velocity, which is directly related to a harmonic of the driving force, that is a planetary position. For example: q = 3×(length of Mars) + 2×(length of Jupiter).

  3. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    Calculate time intervals, subtract the times between observations: = = = where τ n {\displaystyle \tau _{n}} is the time interval t n {\displaystyle t_{n}} is the respective observation time

  4. Numerical model of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Numerical_model_of_the...

    To calculate the accelerations the gravitational attraction of each body on each other body is to be taken into account. As a consequence the amount of calculation in the simulation goes up with the square of the number of bodies: Doubling the number of bodies increases the work with a factor four.

  5. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    Angles in the hours ( h), minutes ( m), and seconds ( s) of time measure must be converted to decimal degrees or radians before calculations are performed. 1 h = 15°; 1 m = 15′; 1 s = 15″ Angles greater than 360° (2 π ) or less than 0° may need to be reduced to the range 0°−360° (0–2 π ) depending upon the particular calculating ...

  6. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  7. Orbit determination - Wikipedia

    en.wikipedia.org/wiki/Orbit_determination

    In order to determine the unknown orbit of a body, some observations of its motion with time are required. In early modern astronomy, the only available observational data for celestial objects were the right ascension and declination, obtained by observing the body as it moved in its observation arc, relative to the fixed stars, using an optical telescope.

  8. Jet Propulsion Laboratory Development Ephemeris - Wikipedia

    en.wikipedia.org/wiki/Jet_Propulsion_Laboratory...

    Data may be based on each planet's geometric center or a planetary-system barycenter. The use of Chebyshev polynomials enables highly precise, efficient calculations for any given point in time. DE405 calculation for the inner planets "recovers" accuracy of about 0.001 seconds of arc (arcseconds) (equivalent to about 1 km at the distance of ...

  9. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For example, to view the eccentricity of the planet Mercury (e = 0.2056), one must simply calculate the inverse sine to find the projection angle of 11.86 degrees. Then, tilting any circular object by that angle, the apparent ellipse of that object projected to the viewer's eye will be of the same eccentricity.