Search results
Results from the WOW.Com Content Network
Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.
These results agree with those above for nonuniform circular motion. See also the article on non-uniform circular motion. If this acceleration is multiplied by the particle mass, the leading term is the centripetal force and the negative of the second term related to angular acceleration is sometimes called the Euler force. [22]
A classic example of a fictitious force in circular motion is the experiment of rotating spheres tied by a cord and spinning around their centre of mass. In this case, the identification of a rotating, non-inertial frame of reference can be based upon the vanishing of fictitious forces.
A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed , potential and kinetic energy are constant.
In this case, the balance shows the value of the force of gravity on the object. When the same object is weighed on the equator, the same two real forces act upon the object. However, the object is moving in a circular path as the Earth rotates and therefore experiencing a centripetal acceleration.
1936: In Alexander Belyaev's novel KETs Star a circular space station provides pseudo-gravity of about 0.1g by its rotation. 1958: The film Queen of Outer Space features a rotating space station that gets blown up. 1968: Arthur C. Clarke's novel 2001: A Space Odyssey was developed concurrently with Stanley Kubrick's film version of the same name.
From the fixed inertial frame of reference above Earth, the train now rotates along with the rest of the Earth. 0.34% of the force of gravity provides the centripetal force needed to achieve the circular motion on that frame of reference. The remaining force, as measured by a scale, makes the train and passengers "lighter" than in the previous ...
A ball in circular motion held by a string tied to a fixed post. The figure at right shows a ball in uniform circular motion held to its path by a string tied to an immovable post. In this system a centripetal force upon the ball provided by the string maintains the circular motion, and the reaction to it, which some refer to as the reactive ...