Search results
Results from the WOW.Com Content Network
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f.A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y.
If X is a smooth complete curve (for example, P 1) and if f is a rational map from X to a projective space P m, then f is a regular map X → P m. [5] In particular, when X is a smooth complete curve, any rational function on X may be viewed as a morphism X → P 1 and, conversely, such a morphism as a rational function on X.
Lüroth's problem concerns subextensions L of K(X), the rational functions in the single indeterminate X. Any such field is either equal to K or is also rational, i.e. L = K(F) for some rational function F. In geometrical terms this states that a non-constant rational map from the projective line to a curve C can only occur when C also has genus 0.
In the examples below, the Euler diagram depicts that the sets Animal and Mineral are disjoint since the corresponding curves are disjoint, and also that the set Four Legs is a subset of the set of Animals. The Venn diagram, which uses the same categories of Animal, Mineral, and Four Legs, does not encapsulate
A map : is called an open map or a strongly open map if it satisfies any of the following equivalent conditions: Definition: f : X → Y {\displaystyle f:X\to Y} maps open subsets of its domain to open subsets of its codomain; that is, for any open subset U {\displaystyle U} of X {\displaystyle X} , f ( U ) {\displaystyle f(U)} is an open ...
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
In mathematics, in the representation theory of algebraic groups, a linear representation of an algebraic group is said to be rational if, viewed as a map from the group to the general linear group, it is a rational map of algebraic varieties. Finite direct sums and products of rational representations are rational.