Search results
Results from the WOW.Com Content Network
For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 + 2x + 1. One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that (for all numbers x), the square of x is the same as the square of its additive inverse −x.
If two primes which end in 3 or 7 and surpass by 3 a multiple of 4 are multiplied, then their product will be composed of a square and the quintuple of another square. In other words, if p, q are of the form 20k + 3 or 20k + 7, then pq = x 2 + 5y 2. Euler later extended this to the conjecture that
For example, antiderivatives of x 2 + 1 have the form 1 / 3 x 3 + x + c. For polynomials whose coefficients come from more abstract settings (for example, if the coefficients are integers modulo some prime number p , or elements of an arbitrary ring), the formula for the derivative can still be interpreted formally, with the coefficient ...
Since x 2 represents the area of a square with side of length x, and bx represents the area of a rectangle with sides b and x, the process of completing the square can be viewed as visual manipulation of rectangles. Simple attempts to combine the x 2 and the bx rectangles into a larger square result in a missing corner.
Tarski's circle-squaring problem is the challenge, posed by Alfred Tarski in 1925, [1] to take a disc in the plane, cut it into finitely many pieces, and reassemble the pieces so as to get a square of equal area. It is possible, using pieces that are Borel sets, but not with pieces cut by Jordan curves.
Most but not all overdetermined systems, when constructed with random coefficients, are inconsistent. For example, the system x 3 – 1 = 0, x 2 – 1 = 0 is overdetermined (having two equations but only one unknown), but it is not inconsistent since it has the solution x = 1.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
In a Cartesian coordinate system with coordinates (x, y), a unit square is defined as a square consisting of the points where both x and y lie in a closed unit interval from 0 to 1. That is, a unit square is the Cartesian product I × I , where I denotes the closed unit interval.