Search results
Results from the WOW.Com Content Network
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix generated from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and inverse of square matrices.
The entries form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10. In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order .
Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: = where the n × n matrix A has a nonzero determinant, and the vector = (, …,) is the column vector of the variables. Then the theorem states that in this case the system has a unique solution, whose individual values for the unknowns ...
For a Hermitian matrix, the norm squared of the jth component of a normalized eigenvector can be calculated using only the matrix eigenvalues and the eigenvalues of the corresponding minor matrix, |, | = (()) (), where is the submatrix formed by removing the jth row and column from the original matrix.
A square matrix is a matrix with the same number of rows and columns. [5] An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied. The entries a ii form the main diagonal of a square matrix. They lie on the imaginary line that runs from the top left corner to the bottom ...
Applicable to: m-by-n matrix A. Unit-Scale-Invariant Singular-Value Decomposition: =, where S is a unique nonnegative diagonal matrix of scale-invariant singular values, U and V are unitary matrices, is the conjugate transpose of V, and positive diagonal matrices D and E.
Finding a given Latin square's isomorphism class can be a difficult computational problem for squares of large order. To reduce the problem somewhat, a Latin square can always be put into a standard form known as a reduced square. A reduced square has its top row elements written in some natural order for the symbol set (for example, integers ...
In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n-matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1)-submatrices of B.