enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  3. Entropic force - Wikipedia

    en.wikipedia.org/wiki/Entropic_force

    The internal energy of an ideal gas depends only on its temperature, and not on the volume of its containing box, so it is not an energy effect that tends to increase the volume of the box as gas pressure does. This implies that the pressure of an ideal gas has an entropic origin. [5] What is the origin of such an entropic force?

  4. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    This local increase in order is, however, only possible at the expense of an entropy increase in the surroundings; here more disorder must be created. [9] [15] The conditioner of this statement suffices that living systems are open systems in which both heat, mass, and or work may transfer into or out of the system. Unlike temperature, the ...

  5. Entropy (energy dispersal) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(energy_dispersal)

    The entropy of mixing is one of these complex cases, when two or more different substances are mixed at the same temperature and pressure. There will be no net exchange of heat or work, so the entropy increase will be due to the literal spreading out of the motional energy of each substance in the larger combined final volume.

  6. Compressor characteristic - Wikipedia

    en.wikipedia.org/wiki/Compressor_characteristic

    Compressor characteristic is a mathematical curve that shows the behaviour of a fluid going through a dynamic compressor.It shows changes in fluid pressure, temperature, entropy, flow rate etc.) with the compressor operating at different speeds.

  7. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    The surroundings will maximize its entropy given its newly acquired energy, which is equivalent to the energy having been transferred as heat. Since the potential energy of the system is now at a minimum with no increase in the energy due to heat of either the marble or the bowl, the total energy of the system is at a minimum.

  8. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    Enthalpy-Entropy diagram of stagnation state. In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero. The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity.

  9. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    The entropy of a given mass does not change during a process that is internally reversible and adiabatic. A process during which the entropy remains constant is called an isentropic process, written Δ s = 0 {\displaystyle \Delta s=0} or s 1 = s 2 {\displaystyle s_{1}=s_{2}} . [ 12 ]