enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    However, the equality of two real numbers given by an expression is known to be undecidable (specifically, real numbers defined by expressions involving the integers, the basic arithmetic operations, the logarithm and the exponential function). In other words, there cannot exist any algorithm for deciding such an equality (see Richardson's theorem

  3. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    If a, b, and c are real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x-coordinates of the points where the graph touches the x-axis. If the discriminant is positive, the graph touches the x-axis at two points; if zero, the graph touches at one point; and if negative, the graph does not touch the x-axis

  4. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable ⁠ x {\displaystyle x} ⁠ is denoted ⁠ exp ⁡ x {\displaystyle \exp x} ⁠ or ⁠ e x {\displaystyle e^{x}} ⁠ , with the two notations used interchangeably.

  5. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    Galileo's law of odd numbers. A ramification of the difference of consecutive squares, Galileo's law of odd numbers states that the distance covered by an object falling without resistance in uniform gravity in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain ...

  6. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    A power of two is a number of the form 2 n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. In the fast-growing hierarchy, 2 n is exactly equal to (). In the Hardy hierarchy, 2 n is exactly equal to ().

  7. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).

  8. What are angel numbers? A guide to the numeric ... - AOL

    www.aol.com/angel-numbers-guide-numeric...

    Angel numbers are repeating number sequences, often used as guides for deeper spiritual exploration. Ranging from 000 to 999 , each sequence carries its own distinct meaning and energy.

  9. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    By writing + = (+) + = + we show that the sum of a positive number x and its reciprocal is always greater than or equal to 2. The square of a real expression is always greater than or equal to zero, which gives the stated bound; and here we achieve 2 just when x is 1, causing the square to vanish.