enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    For this reason, the strong classifiers are arranged in a cascade in order of complexity, where each successive classifier is trained only on those selected samples which pass through the preceding classifiers. If at any stage in the cascade a classifier rejects the sub-window under inspection, no further processing is performed and continue on ...

  3. Cascading classifiers - Wikipedia

    en.wikipedia.org/wiki/Cascading_classifiers

    Cascade classifiers are available in OpenCV, with pre-trained cascades for frontal faces and upper body. Training a new cascade in OpenCV is also possible with either haar_training or train_cascades methods. This can be used for rapid object detection of more specific targets, including non-human objects with Haar-like features. The process ...

  4. Haar-like feature - Wikipedia

    en.wikipedia.org/wiki/Haar-like_feature

    In the Viola–Jones object detection framework, the Haar-like features are therefore organized in something called a classifier cascade to form a strong learner or classifier. The key advantage of a Haar-like feature over most other features is its calculation speed. Due to the use of integral images, a Haar-like feature of any size can be ...

  5. Histogram of oriented gradients - Wikipedia

    en.wikipedia.org/wiki/Histogram_of_oriented...

    The generalized Haar wavelets represent the next highest performing approach: they produced roughly a 0.01 miss rate at a 10 −4 false positive rate on the MIT set, and roughly a 0.3 miss rate on the INRIA set. The PCA-SIFT descriptors and shape context descriptors both performed fairly poorly on both data sets.

  6. Haar wavelet - Wikipedia

    en.wikipedia.org/wiki/Haar_wavelet

    The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example. The Haar sequence was proposed in 1909 by Alfréd Haar. [1] Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval [0, 1]. The study of wavelets, and ...

  7. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.

  8. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. [1] ...

  9. Speeded up robust features - Wikipedia

    en.wikipedia.org/wiki/Speeded_up_robust_features

    In computer vision, speeded up robust features (SURF) is a local feature detector and descriptor, with patented applications. It can be used for tasks such as object recognition, image registration, classification, or 3D reconstruction.