enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Born rule - Wikipedia

    en.wikipedia.org/wiki/Born_rule

    The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position.

  3. Measurement in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Measurement_in_quantum...

    The old quantum theory is a collection of results from the years 1900–1925 [23] which predate modern quantum mechanics. The theory was never complete or self-consistent, but was rather a set of heuristic corrections to classical mechanics. [24] The theory is now understood as a semi-classical approximation [25] to modern quantum mechanics. [26]

  4. Reflection principle (Wiener process) - Wikipedia

    en.wikipedia.org/wiki/Reflection_principle...

    In the theory of probability for stochastic processes, the reflection principle for a Wiener process states that if the path of a Wiener process f(t) reaches a value f(s) = a at time t = s, then the subsequent path after time s has the same distribution as the reflection of the subsequent path about the value a. [1]

  5. Brownian bridge - Wikipedia

    en.wikipedia.org/wiki/Brownian_bridge

    Brownian motion, pinned at both ends. This represents a Brownian bridge. A Brownian bridge is a continuous-time gaussian process B(t) whose probability distribution is the conditional probability distribution of a standard Wiener process W(t) (a mathematical model of Brownian motion) subject to the condition (when standardized) that W(T) = 0, so that the process is pinned to the same value at ...

  6. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    If the wavefunction is represented as (,) = (,) ⁡ ((,)), where (,) is a real function which represents the complex phase of the wavefunction, then the probability flux is calculated as: = Hence, the spatial variation of the phase of a wavefunction is said to characterize the probability flux of the wavefunction.

  7. Fermi's golden rule - Wikipedia

    en.wikipedia.org/wiki/Fermi's_golden_rule

    In quantum physics, Fermi's golden rule is a formula that describes the transition rate (the probability of a transition per unit time) from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation.

  8. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  9. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    Several phenomena have the same behavior as quantum tunnelling. Two examples are evanescent wave coupling [49] (the application of Maxwell's wave-equation to light) and the application of the non-dispersive wave-equation from acoustics applied to "waves on strings". [citation needed] These effects are modeled similarly to the rectangular ...