enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Disc integration - Wikipedia

    en.wikipedia.org/wiki/Disc_integration

    Disc integration, also known in integral calculus as the disc method, is a method for calculating the volume of a solid of revolution of a solid-state material when integrating along an axis "parallel" to the axis of revolution. This method models the resulting three-dimensional shape as a stack of an infinite number of discs of varying radius ...

  3. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    Much more work is needed to find the volume if we use disc integration. First, we would need to solve y = 8 ( x − 1 ) 2 ( x − 2 ) 2 {\displaystyle y=8(x-1)^{2}(x-2)^{2}} for x . Next, because the volume is hollow in the middle, we would need two functions: one that defined an outer solid and one that defined the inner hollow.

  4. Annulus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Annulus_(mathematics)

    An annulus Illustration of Mamikon's visual calculus method showing that the areas of two annuli with the same chord length are the same regardless of inner and outer radii. [1] In mathematics, an annulus (pl.: annuli or annuluses) is the region between two concentric circles. Informally, it is shaped like a ring or a hardware washer.

  5. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  6. Surface area - Wikipedia

    en.wikipedia.org/wiki/Surface_area

    A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...

  7. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.

  8. Surface integral - Wikipedia

    en.wikipedia.org/wiki/Surface_integral

    The obvious solution is then to split that surface into several pieces, calculate the surface integral on each piece, and then add them all up. This is indeed how things work, but when integrating vector fields, one needs to again be careful how to choose the normal-pointing vector for each piece of the surface, so that when the pieces are put ...

  9. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    The problem of finding the area under an arbitrary curve, now known as integration in calculus, or quadrature in numerical analysis, was known as squaring before the invention of calculus. [10] Since the techniques of calculus were unknown, it was generally presumed that a squaring should be done via geometric constructions, that is, by compass ...