Search results
Results from the WOW.Com Content Network
Viewing the lanthanides from left to right in the periodic table, the seven 4f atomic orbitals become progressively more filled (see above and Periodic table § Electron configuration table). The electronic configuration of most neutral gas-phase lanthanide atoms is [Xe]6s 2 4f n, where n is 56 less than the atomic number Z.
Lanthanide metals react exothermically with hydrogen to form LnH 2, dihydrides. [1] With the exception of Eu and Yb, which resemble the Ba and Ca hydrides (non-conducting, transparent salt-like compounds),they form black pyrophoric, conducting compounds [6] where the metal sub-lattice is face centred cubic and the H atoms occupy tetrahedral sites. [1]
The lanthanides become harder as the series is traversed: as expected, lanthanum is a soft metal. Lanthanum has a relatively high resistivity of 615 nΩm at room temperature; in comparison, the value for the good conductor aluminium is only 26.50 nΩm. [28] [29] Lanthanum is the least volatile of the lanthanides. [30]
Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below.
The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five (n−1)d orbitals, one ns orbital, and three np orbitals, where n is the principal quantum number. These orbitals can collectively accommodate 18 electrons as either bonding or non-bonding electron pairs.
This phenomenon is often referred to as the orbital penetration effect. The shielding theory also contributes to the explanation of why valence-shell electrons are more easily removed from the atom. Additionally, there is also a shielding effect that occurs between sublevels within the same principal energy level. An electron in the s-sublevel ...
The outer valence electrons are more strongly attracted by the nucleus causing the observed increase in ionization potentials. The d-block contraction can be compared to the lanthanide contraction , which is caused by inadequate shielding of the nuclear charge by electrons occupying f orbitals.
Most lanthanides can use only three electrons as valence electrons, as afterwards the remaining 4f electrons are too strongly bound: cerium is an exception because of the stability of the empty f-shell in Ce 4+ and the fact that it comes very early in the lanthanide series, where the nuclear charge is still low enough until neodymium to allow ...