Search results
Results from the WOW.Com Content Network
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
Recursive algorithms can be replaced with non-recursive counterparts. [18] One method for replacing recursive algorithms is to simulate them using heap memory in place of stack memory. [19] An alternative is to develop a replacement algorithm entirely based on non-recursive methods, which can be challenging. [20]
One problem with this algorithm is that, because of its recursion, it uses stack space proportional to the height of a tree. If the tree is fairly balanced, this amounts to O(log n) space for a tree containing n elements. In the worst case, when the tree takes the form of a chain, the height of the tree is n so the algorithm takes O(n) space. A ...
Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. [1] Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition ...
Common examples include algorithms on trees, and recursive descent parsers. As with direct recursion, tail call optimization is necessary if the recursion depth is large or unbounded, such as using mutual recursion for multitasking. Note that tail call optimization in general (when the function called is not the same as the original function ...
The left and right neighbors can also be constructed efficiently by parallel algorithms, making this formulation useful in efficient parallel algorithms for Cartesian tree construction. [4] Another linear-time algorithm for Cartesian tree construction is based on divide-and-conquer. The algorithm recursively constructs the tree on each half of ...
This tree is just the leaf node C1, so the polygon C1 is rendered. We then draw the polygons of A; We then apply the algorithm to the child BSP tree containing polygons in front of A. This tree has root node B2. V is behind B2 so first, we apply the algorithm to the child BSP tree containing polygons in front of B2:
A vantage-point tree can be used to find the nearest neighbor of a point x. The search algorithm is recursive. At any given step we are working with a node of the tree that has a vantage point v and a threshold distance t. The point of interest x will be some distance from the vantage point v.