Search results
Results from the WOW.Com Content Network
In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. The term " butterfly effect " in popular media may stem from the real-world implications of the Lorenz attractor, namely that tiny changes in initial conditions evolve to completely different trajectories .
Burke-Shaw chaotic attractor [8] continuous: real: 3: 2: Chen chaotic attractor [9] continuous: real: 3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and ...
The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...
The critical attractor. An attractor is a term used to refer to a region that has the property of attracting surrounding orbits, and is the orbit that is eventually drawn into and continues. The attractive fixed points and periodic points mentioned above are also members of the attractor family.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Visual representation of a strange attractor. [1] Another visualization of the same 3D attractor is this video.Code capable of rendering this is available.. In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, [2] for a wide variety of starting conditions of the system.
Symmetry breaking in pitchfork bifurcation as the parameter ε is varied. ε = 0 is the case of symmetric pitchfork bifurcation.. In a dynamical system such as ¨ + (;) + =, which is structurally stable when , if a bifurcation diagram is plotted, treating as the bifurcation parameter, but for different values of , the case = is the symmetric pitchfork bifurcation.
In the Lorenz system, for classical parameters, the attractor is self-excited with respect to all existing equilibria, and can be visualized by any trajectory from their vicinities; however, for some other parameter values there are two trivial attractors coexisting with a chaotic attractor, which is a self-excited one with respect to the zero ...