enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nick (DNA) - Wikipedia

    en.wikipedia.org/wiki/Nick_(DNA)

    A single-stranded break (nick) in DNA can be formed by the hydrolysis and subsequent removal of a phosphate group within the helical backbone. This leads to a different DNA conformation, where a hydrogen bond forms in place of the missing piece of the DNA backbone in order to preserve the structure.

  3. Nick translation - Wikipedia

    en.wikipedia.org/wiki/Nick_translation

    Nick translation [1] (or head translation), developed in 1977 by Peter Rigby and Paul Berg, is a tagging technique in molecular biology in which DNA polymerase I is used to replace some of the nucleotides of a DNA sequence with their labeled analogues, creating a tagged DNA sequence which can be used as a probe in fluorescent in situ hybridization (FISH) or blotting techniques.

  4. DNA repair - Wikipedia

    en.wikipedia.org/wiki/DNA_repair

    Enzymes called AP endonucleases nick the damaged DNA backbone at the AP site. DNA polymerase then removes the damaged region using its 5' to 3' exonuclease activity and correctly synthesizes the new strand using the complementary strand as a template. [22] The gap is then sealed by enzyme DNA ligase. [23]

  5. Base excision repair - Wikipedia

    en.wikipedia.org/wiki/Base_excision_repair

    Uracil DNA glycosylase flips a uracil residue out of the duplex, shown in yellow. DNA glycosylases are responsible for initial recognition of the lesion. They flip the damaged base out of the double helix, as pictured, and cleave the N-glycosidic bond of the damaged base, leaving an AP site. There are two categories of glycosylases ...

  6. Prime editing - Wikipedia

    en.wikipedia.org/wiki/Prime_editing

    Nuclease Prime Editor uses Cas9 nuclease instead of Cas9(H840A) nickase. Unlike prime editor 3 (PE3) that requires dual-nick at both DNA strands to induce efficient prime editing, Nuclease Prime Editor requires only a single pegRNA since the single-gRNA already creates double-strand break instead of single-strand nick. [10]

  7. Okazaki fragments - Wikipedia

    en.wikipedia.org/wiki/Okazaki_fragments

    The FEN1 cleaves the short flap immediately after they form. The cleavage is inhibited when the 5’ end of the DNA flap is blocked either with a complementary primer or a biotin-conjugated streptavidin moiety. DNA ligase seals the nick made by the FEN1 and it creates a functional continuous double strand of DNA.

  8. Chi site - Wikipedia

    en.wikipedia.org/wiki/Chi_site

    Upon encountering the Chi sequence as it unwinds DNA, RecBCD cuts the DNA a few nucleotides to the 3’ side of Chi, within the important sequences noted above; depending on the reaction conditions, this cut is either a simple nick on the 3'-ended strand or the change of nuclease activity from cutting the 3’-ended strand to cutting the 5 ...

  9. Homologous recombination - Wikipedia

    en.wikipedia.org/wiki/Homologous_recombination

    Homologous recombination that occurs during DNA repair tends to result in non-crossover products, in effect restoring the damaged DNA molecule as it existed before the double-strand break. Homologous recombination is conserved across all three domains of life as well as DNA and RNA viruses , suggesting that it is a nearly universal biological ...