Search results
Results from the WOW.Com Content Network
Traditionally, the termination signal for translation is a 3 nucleobase sequence called a stop codon. [2] Research has shown that the nucleobases surrounding the stop codon can impact termination efficiency. [2] Specifically, the 4th base (nucleobase directly following the stop codon) has a significant impact on the termination efficiency. [2]
Stop codon suppression or translational readthrough occurs when in translation a stop codon is interpreted as a sense codon, that is, when a (standard) amino acid is 'encoded' by the stop codon. Mutated tRNAs can be the cause of readthrough, but also certain nucleotide motifs close to the stop codon.
In genetics, a transcription terminator is a section of nucleic acid sequence that marks the end of a gene or operon in genomic DNA during transcription.This sequence mediates transcriptional termination by providing signals in the newly synthesized transcript RNA that trigger processes which release the transcript RNA from the transcriptional complex.
This is part of the process that regulates the transcription of RNA to preserve gene expression integrity and are present in both eukaryotes and prokaryotes, although the process in bacteria is more widely understood. [1] The most extensively studied and detailed transcriptional termination factor is the Rho (ρ) protein of E. coli. [2]
An alternative definition says that an ORF is a sequence that has a length divisible by three and is bounded by stop codons. [1] [4] This more general definition can be useful in the context of transcriptomics and metagenomics, where a start or stop codon may not be present in the obtained sequences. Such an ORF corresponds to parts of a gene ...
Stop codon recognition makes eRF3 hydrolyze the GTP, and the resulting movement puts the GGQ into the PTC to allow for hydrolysis. The movement also causes a +2-nt movement of the toeprint of the pre-termination complex. [13] The archaeal aRF1–EF1α–GTP complex is similar. [18] The triggering mechanism is similar to that of aa-tRNA–EF-Tu ...
In terms of transcription termination, the archaeal genome is unique in that it is sensitive to both intrinsic termination and factor-dependent termination. Bioinformatic analysis has shown that approximately half of the genes and operons in Archaea arrange themselves into signals or contain signals for intrinsic termination. [ 10 ]
Class 1 release factors recognize stop codon, and class 2 release factors stimulate hydrolysis by GTPase activity. However, prokaryotes don't have a single protein to recognize all the stop codons. The stop codon UAG is decoded by Release Factor 1 (RF1) and UGA is decoded by Release Factor 2. The final stop codon UAA is decoded by both RF1 and ...