enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Download QR code; Print/export Download as PDF; Printable version; In other projects ... In mathematics, positive semidefinite may refer to: Positive semidefinite ...

  3. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:

  4. Mercer's theorem - Wikipedia

    en.wikipedia.org/wiki/Mercer's_theorem

    Mercer's theorem itself is a generalization of the result that any symmetric positive-semidefinite matrix is the Gramian matrix of a set of vectors. The first generalization replaces the interval [ a , b ] with any compact Hausdorff space and Lebesgue measure on [ a , b ] is replaced by a finite countably additive measure μ on the Borel ...

  5. Fidelity of quantum states - Wikipedia

    en.wikipedia.org/wiki/Fidelity_of_quantum_states

    The fidelity between two quantum states and , expressed as density matrices, is commonly defined as: [1] [2] (,) = (⁡).The square roots in this expression are well-defined because both and are positive semidefinite matrices, and the square root of a positive semidefinite matrix is defined via the spectral theorem.

  6. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  7. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).

  8. Trace inequality - Wikipedia

    en.wikipedia.org/wiki/Trace_inequality

    Let denote the space of Hermitian matrices, + denote the set consisting of positive semi-definite Hermitian matrices and + + denote the set of positive definite Hermitian matrices. For operators on an infinite dimensional Hilbert space we require that they be trace class and self-adjoint , in which case similar definitions apply, but we discuss ...

  9. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix is not necessarily positive semidefinite. For example, consider