Search results
Results from the WOW.Com Content Network
Octave (aka GNU Octave) is an alternative to MATLAB. Originally conceived in 1988 by John W. Eaton as a companion software for an undergraduate textbook, Eaton later opted to modify it into a more flexible tool. Development begun in 1992 and the alpha version was released in 1993. Subsequently, version 1.0 was released a year after that in 1994.
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
The plus–minus sign, ±, is used as a shorthand notation for two expressions written as one, representing one expression with a plus sign, the other with a minus sign. For example, y = x ± 1 represents the two equations y = x + 1 and y = x − 1. Sometimes, it is used for denoting a positive-or-negative term such as ±x.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
Catastrophic cancellation may happen even if the difference is computed exactly, as in the example above—it is not a property of any particular kind of arithmetic like floating-point arithmetic; rather, it is inherent to subtraction, when the inputs are approximations themselves.
If each subtraction is replaced with addition of the opposite (additive inverse), then the associative and commutative laws of addition allow terms to be added in any order. The radical symbol t {\displaystyle {\sqrt {\vphantom {t}}}} is traditionally extended by a bar (called vinculum ) over the radicand (this avoids the need for ...
The application of MacCormack method to the above equation proceeds in two steps; a predictor step which is followed by a corrector step. Predictor step: In the predictor step, a "provisional" value of u {\displaystyle u} at time level n + 1 {\displaystyle n+1} (denoted by u i p {\displaystyle u_{i}^{p}} ) is estimated as follows
Adding a scalar multiple of one row to another. If the matrix is associated to a system of linear equations, then these operations do not change the solution set. Therefore, if one's goal is to solve a system of linear equations, then using these row operations could make the problem easier.