Search results
Results from the WOW.Com Content Network
A process of defuzzification is said to occur, when fuzzy concepts can be logically described in terms of fuzzy sets, or the relationships between fuzzy sets, which makes it possible to define variations in the meaning or applicability of concepts as quantities. Effectively, qualitative differences are in that case described more precisely as ...
As the standard negator is used in the above definition of a t-norm/t-conorm pair, this can be generalized as follows: A De Morgan triplet is a triple (T,⊥,n) such that [1] T is a t-norm; ⊥ is a t-conorm according to the axiomatic definition of t-conorms as mentioned above; n is a strong negator
Inner product spaces are a subset of normed vector spaces, which are a subset of metric spaces, which in turn are a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]
The space of distributions, being defined as the continuous dual space of (), is then endowed with the (non-metrizable) strong dual topology induced by () and the canonical LF-topology (this topology is a generalization of the usual operator norm induced topology that is placed on the continuous dual spaces of normed spaces).
The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...
If is a topological vector space and if this convex absorbing subset is also a bounded subset of , then the absorbing disk := | | = will also be bounded, in which case will be a norm and (,) will form what is known as an auxiliary normed space. If this normed space is a Banach space then is called a Banach disk.
In mathematics, a uniformly smooth space is a normed vector space satisfying the property that for every > there exists > ...
The Lebesgue space. The normed vector space ((,), ‖ ‖) is called space or the Lebesgue space of -th power integrable functions and it is a Banach space for every (meaning that it is a complete metric space, a result that is sometimes called the Riesz–Fischer theorem).