Search results
Results from the WOW.Com Content Network
A classic example of recursion is computing the factorial, which is defined recursively by 0! := 1 and n! := n × (n - 1)!. To recursively compute its result on a given input, a recursive function calls (a copy of) itself with a different ("smaller" in some way) input and uses the result of this call to construct its result.
C, Java, and Python are notable mainstream languages in which all function calls, including tail calls, may cause stack allocation that would not occur with the use of looping constructs; in these languages, a working iterative program rewritten in recursive form may overflow the call stack, although tail call elimination may be a feature that ...
In programming languages that support anonymous functions, fixed-point combinators allow the definition and use of anonymous recursive functions, i.e. without having to bind such functions to identifiers. In this setting, the use of fixed-point combinators is sometimes called anonymous recursion. [note 4] [23]
This is mainly of academic interest, particularly to show that the lambda calculus has recursion, as the resulting expression is significantly more complicated than the original named recursive function. Conversely, the use of fixed-pointed combinators may be generically referred to as "anonymous recursion", as this is a notable use of them ...
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
For example, addition and division, the factorial and exponential function, and the function which returns the nth prime are all primitive recursive. [1] In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. [ 2 ]
This example is mutual single recursion, and could easily be replaced by iteration. In this example, the mutually recursive calls are tail calls, and tail call optimization would be necessary to execute in constant stack space. In C, this would take O(n) stack space, unless rewritten to use jumps instead of calls. [4]
The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]