Search results
Results from the WOW.Com Content Network
Exposure to ELF waves can induce an electric current. Because the human body is conductive, electric currents and resulting voltages differences typically accumulate on the skin but do not reach interior tissues. [22] People can start to perceive high-voltage charges as tingling when hair or clothing in contact with the skin stands up or ...
The light that excites the human visual system is a very small portion of the electromagnetic spectrum. A rainbow shows the optical (visible) part of the electromagnetic spectrum; infrared (if it could be seen) would be located just beyond the red side of the rainbow whilst ultraviolet would appear just beyond the opposite violet end.
Blue light, a type of high-energy light, is part of the visible light spectrum. High-energy visible light (HEV light) is short-wave light in the violet/blue band from 400 to 450 nm in the visible spectrum, which has a number of purported negative biological effects, namely on circadian rhythm and retinal health (blue-light hazard), which can lead to age-related macular degeneration.
The waves of longer wavelength than UV in visible light, infrared, and microwave frequencies cannot break bonds but can cause vibrations in the bonds which are sensed as heat. Radio wavelengths and below generally are not regarded as harmful to biological systems.
Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Like all other electromagnetic waves, they travel at the speed of light. Naturally occurring radio waves are made by lightning, or by astronomical objects.
An example of this phenomenon is when clean air scatters blue light more than red light, and so the midday sky appears blue (apart from the area around the Sun which appears white because the light is not scattered as much). The optical window is also referred to as the "visible window" because it overlaps the human visible response spectrum.
In some cases, objects or waves may appear to travel faster than light (e.g., phase velocities of waves, the appearance of certain high-speed astronomical objects, and particular quantum effects). The expansion of the universe is understood to exceed the speed of light beyond a certain boundary.
Faster-than-light (superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light in vacuum (c). The special theory of relativity implies that only particles with zero rest mass (i.e., photons ) may travel at the speed of light, and that nothing may travel faster.