enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    This problem is discussed in detail by Weisberg in the discussion section of the Efron et al. (2004) Annals of Statistics article. [3] Weisberg provides an empirical example based upon re-analysis of data originally used to validate LARS that the variable selection appears to have problems with highly correlated variables.

  3. Response surface methodology - Wikipedia

    en.wikipedia.org/wiki/Response_surface_methodology

    In statistics, response surface methodology (RSM) explores the relationships between several explanatory variables and one or more response variables. RSM is an empirical model which employs the use of mathematical and statistical techniques to relate input variables, otherwise known as factors, to the response.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model. Nonlinear models for binary dependent variables include the probit and logit model.

  5. Binomial regression - Wikipedia

    en.wikipedia.org/wiki/Binomial_regression

    The response variable Y is assumed to be binomially distributed conditional on the explanatory variables X. The number of trials n is known, and the probability of success for each trial p is specified as a function θ(X). This implies that the conditional expectation and conditional variance of the observed fraction of successes, Y/n, are

  6. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    It is also possible in some cases to fix the problem by applying a transformation to the response variable (e.g., fitting the logarithm of the response variable using a linear regression model, which implies that the response variable itself has a log-normal distribution rather than a normal distribution).

  7. Response modeling methodology - Wikipedia

    en.wikipedia.org/wiki/Response_Modeling_Methodology

    If the response data used to estimate the model contain values that change sign, or if the lowest response value is far from zero (for example, when data are left-truncated), a location parameter, L, may be added to the response so that the expressions for the quantile function and for the median become, respectively:

  8. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  9. Quantile regression - Wikipedia

    en.wikipedia.org/wiki/Quantile_regression

    Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.