Search results
Results from the WOW.Com Content Network
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).
Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...
fps 2: ≡ 1 ft/s 2 = 3.048 × 10 −1 m/s 2: gal; galileo: Gal ≡ 1 cm/s 2 = 10 −2 m/s 2: inch per minute per second: ipm/s ≡ 1 in/(min⋅s) = 4.2 3 × 10 −4 m/s 2: inch per second squared: ips 2: ≡ 1 in/s 2 = 2.54 × 10 −2 m/s 2: knot per second: kn/s ≡ 1 kn/s ≈ 5.1 4 × 10 −1 m/s 2: metre per second squared (SI unit) m/s 2 ...
For example, antiderivatives of x 2 + 1 have the form 1 / 3 x 3 + x + c. For polynomials whose coefficients come from more abstract settings (for example, if the coefficients are integers modulo some prime number p , or elements of an arbitrary ring), the formula for the derivative can still be interpreted formally, with the coefficient ...
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.
The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.
where p 1 < p 2 < ... < p k are primes and the n i are positive integers. This representation is commonly extended to all positive integers, including 1, by the convention that the empty product is equal to 1 (the empty product corresponds to k = 0). This representation is called the canonical representation [10] of n, or the standard form [11 ...