Search results
Results from the WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. [1] Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent.
A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]
In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...
where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).
Independent events vs. mutually exclusive events The concepts of mutually independent events and mutually exclusive events are separate and distinct. The following table contrasts results for the two cases (provided that the probability of the conditioning event is not zero).
The events 1 and 6 are mutually exclusive but not collectively exhaustive. The events "even" (2,4 or 6) and "not-6" (1,2,3,4, or 5) are also collectively exhaustive but not mutually exclusive. In some forms of mutual exclusion only one event can ever occur, whether collectively exhaustive or not.
A collection of events is said to be mutually independent if for any subset of the collection, the joint probability of all events occurring is equal to the product of the joint probabilities of the individual events. Think of the result of a series of coin-flips.